Microadenomatous lesions involving loss of Apc heterozygosity in the colon of adult Apc(Min/+) mice.

نویسندگان

  • Yasuhiro Yamada
  • Kazuya Hata
  • Yoshinobu Hirose
  • Akira Hara
  • Shigeyuki Sugie
  • Toshiya Kuno
  • Naoki Yoshimi
  • Takuji Tanaka
  • Hideki Mori
چکیده

Mutations in the human adenomatous polyposis coli (APC) gene are causative for familial adenomatous polyposis (FAP), a rare condition in which numerous colonic polyps arise during puberty and, if left untreated, lead to colon cancer. Mouse model for human FAP, Apc(Min/+) mouse, contains a truncating mutation in the Apc gene and spontaneously develops intestinal adenomas. However, the distribution of tumors along the intestine found in Apc(Min/+) mice is different from that in human FAP. A majority of intestinal polyps in the Apc(Min/+) mice is known to be located in the small intestine but rarely detected in the colon. We report here that adult Apc(Min/+) mice develop dozens of microadenomatous lesions in the colon (>20 lesions/colon). Surprisingly, the vast majority of such adenomatous lesions consisting of colonic crypts were <300 microm in their greatest dimension, whereas lesions in the small intestine showed various sizes. The allelic loss analysis revealed that these adenomatous crypts in the colon have already lost the remaining allele of Apc. Such findings suggest that, in contrast to tumorigenesis in the small intestine, loss of heterozygosity of the Apc gene is not sufficient for tumor development in the colon of Apc(Min/+) mice. Our results may give an account for the low incidence of colonic tumors in Apc(Min/+) mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A resistant genetic background leading to incomplete penetrance of intestinal neoplasia and reduced loss of heterozygosity in ApcMin/+ mice.

Previous studies of Min/+ (multiple intestinal neoplasia) mice on a sensitive genetic background, C57BL/6 (B6), showed that adenomas have lost heterozygosity for the germ-line ApcMin mutation in the Apc (adenomatous polyposis coli) gene. We now report that on a strongly resistant genetic background, AKR/J (AKR), Min-induced adenoma multiplicity is reduced by about two orders of magnitude compar...

متن کامل

Tgfbr1 haploinsufficiency is a potent modifier of colorectal cancer development.

Transforming growth factor-beta (TGF-beta) signaling is frequently altered in colorectal cancer. Using a novel model of mice heterozygous for a targeted null mutation of Tgfbr1 crossed with Apc(Min/+) mice, we show that Apc(Min/+);Tgfbr1(+/-) mice develop twice as many intestinal tumors as Apc(Min/+);Tgfbr1(+/+) mice, as well as adenocarcinoma of the colon, without loss of heterozygosity at the...

متن کامل

Tumor regionality in the mouse intestine reflects the mechanism of loss of Apc function.

Inherited colorectal cancer syndromes in humans exhibit regional specificity for tumor formation. By using mice with germline mutations in the adenomatous polyposis coli gene (Apc) and/or DNA mismatch repair genes, we have analyzed the genetic control of tumor regionality in the mouse small intestine. In C57BL/6 mice heterozygous for the Apc multiple intestinal neoplasia mutation (Apc(Min)), in...

متن کامل

Potent Modulation of Intestinal Tumorigenesis in Apc Mice by the Polyamine Catabolic Enzyme Spermidine/Spermine N-acetyltransferase

Intracellular polyamine pools are homeostatically maintained by processes involving biosynthesis, catabolism, and transport. Although most polyamine-based anticancer strategies target biosynthesis, we recently showed that activation of polyamine catabolism at the level of spermidine/spermine N-acetyltransferase-1 (SSAT) suppresses tumor outgrowth in a mouse prostate cancer model. Herein, we exa...

متن کامل

Monoallelic silencing and haploinsufficiency in early murine intestinal neoplasms.

Studies of tumors from human familial adenomatous polyposis, sporadic colon cancer, and mouse and rat models of intestinal cancer indicate that the majority of early adenomas develop through loss of normal function of the Adenomatous polyposis coli (APC) gene. In murine models of familial adenomatous polyposis, specifically the multiple intestinal neoplasia mouse (Min) and the polyposis in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 62 22  شماره 

صفحات  -

تاریخ انتشار 2002